
Two solvers for tractable temporal constraints with preferences

F. Rossi 1, K.B. Venable I , L. Khatib 2'3, P. Morris a, R. Morris a

1 Department of Pure and Applied Mathematics, University of Padova, Italy. E-mail: frossi@math.unipd.it, kvenable@math.unipd.it
2 Kestrel Technology

3 NASA Ames Research Center, Moffett Field, CA, USA. E-mail: {lina,pmorris,morris} @ptolemy.arc.nasa.gov

Abstract

A number of reasoning problems involving the manipulation
of temporal information can naturally be viewed as implicitly
inducing an ordering of potential local decisions involving
time on the basis of preferences. Soft temporal constraints
problems allow to describe in a natural way scenarios where
events happen over time and preferences are associated to
event distances and durations.

In general, solving soft temporal problems require exponen-
tial time in the worst case, but there are interesting subclasses

of problems which are polynornially solvable. We describe
two solvers based on two different approaches for solving the
same tractable subclass. For each solver we present the the-
oretical results it stands on, a description of the algorithm
and some experimental results. The random generator used
to build the problems on which tests are performed is also de-
scribed. Finally, we compare the two solvers highlighting the
tradeoff between performance and representational power.

Introduction and motivation

Several real world problems involving the manipulation of

temporal information in order to find an assignment of times
to a set of activities or events can naturally be viewed as

having preferences associated with local temporal decisions,
where by a local temporal decision we mean one associated
with how long a single activity should last, when it should
occur, or how it should be ordered with respect to other ac-
tivities.

For example, an antenna on an earth orbiting satellite such
as Landsat 7 must be slewed so that it is pointing at a ground
station in order for recorded science or telemetry data to be
downlinked to earth. Antenna slewing on Landsat 7 has been
shown to occasionally cause a slight vibration to the satel-
lite, which in turn might affect the quality of the image taken

by the scanning instrument if the scanner is in use during
slewing. Consequently, it is preferable for the slewing ac-

tivity not to overlap any scanning activity, although because
the detrimental effect on image quality occurs only intermit-
tently, this disjointness is best not expressed as a hard con-
straint. This is only one of the many real world problems
that can be casted and, under certain assumptions, solved in
our framework.

Copyright @ 2002, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

This paper presents the current formalism and results for
soft temporal constraint problems, and describes two ma-
chineries we have developed for solving such problems. The

implemented modules rely on the theoretical results (such as
those on tractability of some classes of problems) and make
some assumptions for both tractability and efficiency. In

particular: (1) both solvers are able to deal with soft tem-
poral constraints with one interval per constraint, and with a
particular shape of the preference functions, which assures
tractability (like for Simple Temporal Constraints in the case
of hard constraints (?)); (2) preferences are dealt with via a
fuzzy (max-rain) framework; (3) our random problem gener-
ator is based on some parameters to generate a soft temporal

problem, which suitably extend the usual ones for hard CSPs
(density, tightness).

Some preliminary ideas which have led to the develop-
ment described in this paper have been presented in (?).

Temporal constraint problems with

preferences

Temporal constraint reasoning. In the Temporal CSP
framework (TCSP) (?), variables represent events happening
over time, and each constraint gives an allowed range for the
distances or durations, expressed as a set of intervals over the
time line. Satisfying such a constraint means choosing any
of the allowed distances. A solution for a TCSP consisting

of a set of temporal constraints is an assignment of values to
its variables such that all constraints are satisfied.

As expected, general TCSPs are NP-hard. However, TC-
SPs with just one interval for each constraint, called STPs,

are polynomially solvable (see (?) for details).
Although very expressive, TCSPs are able to model just

hard temporal constraints. This means that all constraints
have to be satisfied, and that the solutions of a constraint

are all equally satisfying. However, in many real-life some
solutions are preferred with respect to others. Therefore the
global problem is not to find a way to satisfy all constraints,
but to find a way to satisfy them optimally, according to the

preferences specified.
To address such problems, recently (?) a new framework

has been proposed, where each temporal constraint is asso-
ciated with a preference function, which specifies the prefer-
ence for each distance. This framework is based on a simple

mergeof TCSPsandsoftconstraints,whereforsoftcon-
straintswehavetakenageneralframeworkbasedonsemir-
ings(?). Theresultis aclassof problemscalledTempo-
ralConstraintSatisfactionproblemswithpreferences(TC-
SPPs).

A soft temporal constraint in a TCSPP is represented by a
pair consisting of a set of disjoint intervals and a preference
function: ([= {[al, bl],..., Jan, b,_]}, f), where f: 11 --+
A, is a mapping of the elements of I into preference values,
taken from a set A.

A solution to a TCSPP is a complete assignment to all
the variables that satisfies the distance constraints. Each so-

lution has a global preference value, obtained by combin-

ing the local preference values found in the constraints. To
formalize the process of combining local preferences into

a global preference, and comparing solutions, we impose a
semiring structure ont the TCSPP framework.

A semiring is a tuple (A, +, ×, 0, 1) such that A is a set

and 0, 1 C A; +, the additive operation, is commutative,
associative and 0 is its unit element; x, the multiplicative

operation, is associative, distributes over +, 1 is its unit ele-
ment and 0 is its absorbing element. A c-semiring is a semir-

ing in which + is idempotent, 1 is its absorbing element, and
× is commutative. These additional properties (w.r.t. usual
semirings) are required to cope with the usual nature of con-
straints.

C-semirings allow for a partial order relation <s over A
tobe defined as a <s b iffa+b = b. Informally, <s gives us

a way to compare tuples of values and constraints, and a <s
b can be read b is better than a. Moreover, one can prove

that for all a, b E A, a + b is the least upper bound (lub) of
a and b; and if x is idempotent, then (A, <s) is a complete
distributive lattice and x is its greatest lower bound (glb).

Given a semiring 2 with a set of values A, each prefer-
ence function f associated with a soft constraint (/, f) of
a TCSPP takes an element from [and returns an element
of A, where A is the carrier of a semiring. This allows

us to associate a preference with a duration or a distance.
The two semiring operations allow for complete solutions to
be evaluated in terms of the preference values assigned lo-

cally. More precisely, given a solution t in a TCSPP with
associated semiring (A, +, x, 0, 1), let Ti3 = (Ii,j, fi,j) be
a soft constraint over variables Xi, Xj and (vi, vj) be the

projection of t over the values assigned to variables Xi and
Xj (abbreviated as (vi,vj) = t,x_.x)). Then, the corre-
sponding preference value given by fij is fij (vj - vi), where

vj - vi E Iid. Finally, where F = {xl,. •., xk } is a set, and
x is the multiplicative operator on the semiring, let x F ab-
breviate xl x... x Xk. Then the global preference value of t,
val(t), is defined to be val(t) = x {fij (vj - vi) I (vi, vj) =

t+x,,x_ }. The optimal solutions of a TCSPP are those so-
lutions which have the best global preference value, where
"best" is determined by the ordering <_s of the values in the
semiring.

_Here by I we mean the set of all elements appearing in the
intervals of I.

2For simplicity, from now on we will write semiring meaning
c-semiring.

The semiring underlying the problems targeted here is

S e_,z:y = ([0, 1], max, rain, O, 1), used for fuzzy constraint
solving (?). The global preference value of a solution will
be the minimum of all the preference values associated with
the distances selected by this solution in all constraints, and
the best solutions will be those with the maximal value.

A special case occurs when each constraint of a TCSPP
contains a single interval. We call such problems Simple
Temporal Problems with Preferences (STPPs). In (?) it has
been shown that, while in general TCSPPs are NP-hard, un-
der certain restrictions on the "shape" of the preference func-
tions and on the semiring, STPPs are tractable.

A semi-convex function f is one such that, for all Y, the

set {X such that f(X) > Y} forms an interval. It is easy to
see that semi-convex functions include linear ones, as well

as convex and some step functions. For example, the close to
k criteria cannot be coded into a linear preference function,

but it can be easly specified by a semi-convex preference
function.

It is proven in (?) that STPPs with semi-convex prefer-
ence functions and a semiring with a total order of prefer-
ence values and an idempotent multiplicative operation can

be solved in polynomial time.

A solving module based on path consistency

The tractability results for STPPs can be translated in prac-
tice as follows: to find an optimal solution for an STPP, we
can first apply path-consistency (suitably adapted to STPPs,
see (?)) and then use a search procedure to find a solution
without the need to backtrack. More in details, it is possi-
ble to show that: (1) Semi-convex functions are closed w.r.t.

path-consistency: if we start from an STPP P with semi-
convex functions, and we apply path-consistency, we get a
new STPP P' with semi-convex functions (see (?)). The

only difference in the two problems is that the new one can
have smaller intervals and worse preference values in the

preference functions.(2)After applying path-consistency, all
preference functions in pi have the same best preference
level.(3) Consider the STP obtained from the STPP P' by
taking, for each constraint, the sub-interval corresponding
to the best preference level; then, the solutions of such an
STP coincide with the best solutions of the original P (and

also of P'). Therefore, finding a solution of this STP means
finding an optimal solution of P. Our first solving module,
which we call path-solver, relies on these results. In fact,
the STPP solver takes as input an STPP with semi-convex

preference functions, and returns an optimal solution of the
given problem, working as follows and as shown in Figure
??: first, path-consistency is applied to the given problem,
by function STPP_PC-2, producing a new problem P'; then,
an STP corresponding to p, is constructed, applying RE-
DUCE_TO_BEST to P', by taking the subintervals corre-

sponding to the best preference level and forgetting about
the preference functions; finally, a backtrack-free search is
performed to find a solution of the STP, specifically the earli-
est one is returned by function EARLIEST_BEST. All these
steps are polynomial, so the overall complexity of solving
an STPP with the above assumptions is polynomial.

Algoritmo path-solver

1. input STPP P ;

2. STPP P'=STPP_C-2(P);

3. if P' inconsistent then exit;

4. STP P"=REDUCE_TO_BEST(P');

5. return EARLIEST_BEST(P').

Figure 1: Pseudocode for path-solver.

This STPP solver has been tested both on toy problems

and on randomly-generated problems. The random genera-
tor we have developed focusses on a particular subclass of
semi-convex preference functions: convex quadratic func-
tions of the form ax 2 + bx + c, with a _< 0. The choice has

been suggested both by the expressiveness of such a class
of functions and also by the facility of expressing functions
in this class (just three parameters). Moreover, it generates
fuzzy STPPs, thus preference values are between 0 and 1.

An STPP is generated according to the value of the fol-

lowing parameters:

• number n of variables;

• range r for the initial solution: to assure that the generated
problem has at least one solution, we first generate such a
solution, by giving to each variable a random value within
the range [0, r];

• density: percentage of constraints that are not universal
(that is, with the maximum range and preference 1 for all
interval values);

• maximum expansion from initial solution (max): for each
constraint, the bounds of its interval are set by using a
random value between 0 and max, to be added to and sub-

tracted from the timepoint identified for this constraint by
the initial solution;

• perturbation of preference functions (pa, pb, pc): we re-
call that each preference function can be described by
three values (a, b, and c); to set such values for each
constraint, the generator starts from a standard quadratic
function which passes through the end points of the inter-
val, with value 0, and the middlepoint, with value 0.5, and
then modifies it according to the percentages specified for
a, b, and c.

For example, if we call the generator with the parameters

(10, 20, 30,40, 20, 25, 30}, it will generate a fuzzy STPP
with 10 variables. Moreover, the initial solution will be cho-

sen by giving to each variable a value between 0 and 20.
Among all the constraints, 70% of them will be universal,
while the other 30% will be specified as follows: for each
constraint, consider the timepoint specified by the initial so-
lution, say t; then the interval will be [t-tl, t +t2], where tl
and t2 are random numbers between 0 and 40. Finally, the

preference function in each constraint is specified by taking
the default one and changing its three parameters a, b, and c,

by, respectively, 20%, 25%, and 30%.
To compare our generator with the usual one for classi-

cal CSPs, we notice that the maximum expansion (max) for

180G

1600

1400

1200

_000

i 800

6OO

40O

2OO

0

2O

max=50

max=20

i i m i

30 40 50 60 70

den=_

Figure 2: Time needed to find an optimal solution (in sec-
onds), as a function of density (d). The other parameters
are: n=50, r=100, pa=20, pb=20, and pc=30. Mean on 3

examples.

the constraint intervals roughly corresponds to the tightness.
However, we do not have the same tightness for all con-
straints, because we just set an upper bound to the number of
values allowed in a constraint. Also, we do not explicitly set

the domain of the variables, but we just set the constraints.
This is in line with other temporal CSP generators, like the

one in (?).
In Figure ?? we show some results for finding an optimal

solution for STPPs generated by our generator, which has
been developed in C++ and tested on a Pentium III 1GHz.
As it can be seen, this solver is very slow. The main rea-

son is that it uses a pointwise representation of the con-
straint intervals and the preference functions. This makes
the solver more general, since it can represent any kind of

preference functions, even those that don't have an analyt-
ical representation via a small set of parameters. In fact,
even starting from convex quadratic functions, which need
just three parameters, the first solving phase, which applies
path-consistency, can yield new preference functions which
are not representable via three parameters only. For exam-
ple, we could get semi-convex functions which are generic
step functions, and thus not representable by giving new val-
ues to the initial three parameters.

A solving module for STPPs based on a

chopping procedure

The second solver for STPPs that we have implemented,
and that we will call 'chop-solver', is based on the proof

of tractability for STPPs, with semi-convex preference func-
tions and idempotent multiplicative operator of the underly-
ing semiring, described in (?). Let's briefly recall the main
argument. The first step is to obtain an STP from a given
STPP. In order to do this, we reduce each soft constraint,

(I, f), of the STPP into a simple temporal constraint. Con-
sider y E A, a value in the set of preferences. Then, since
the function f on the soft constraint is semi-conex, the set

Algorithm chop-solver

1. input STPP P;

2. input precision;

3. integer n=0;

4. real lb=0, ub=l, y=0;

5. if(CONSISTENCY(P,y))

6. y=0.5, n=n+l;

7. while (n< =precision)

8. if(CONSISTENCY(Ey))

9. lb=y, y=y+(ub-lb)/2, n=n+ l ;

10. else

11. ub=y, y=y-(ub-lb)/2, n=n+ 1;

12. end of while;

13. return solution;

14. else exit;

Figure 3: Algorithm chop-solver

{x : x E l, f(x) > y} forms an interval, i.e. a simple tem-
poral constraint. Performing this transtbrmation on each soft
constraint of the original STPP we get an STP, wich we refer

to as STP_. The proof states that the set of solutions of the
STPopt, where opt represents the highest level at which the
derived STP is consistent, coincides with the set of optimal
solutions of the STPP.

The solver we have implemented works with STPPs with
semi-convex quadratic functions (lines and convex parabo-
las) based on the fuzzy semiring. This means that the set

of preferences we are considering is the interval [0,1]. The
solver finds an optimal solution of the STPP identifying first

STPopt and returning its earliest or latest solution. Opt is
found by performing a binary search in [0, 1]. The bound
on the precision of a number, that is the maximum number
of decimal coded digits, explains why the number of search

steps is always finite. Moreover, our implementation allows
the user to specify at the beginning of the solving process
the number n of digits he wants for the optimal solution's
preference level. Figure ?? shows the pseudo-code for this
solver.

The search for the optimal preference level starts with

y -- 0. Since STPo is the STP we would obtain con-
sidering all the soft constraints as hard constraints, that is,
with preference function equal to 1 on the elements of the
interval and to 0 everywhere else, the algorithm first checks
if the hard part of the problem is consistent. If it is found
not to be consistent the algorithm stops informing the user
that the whole problem is inconsistent. Otherwise the search

goes on. Three variables are maintained during the search:
ub containing the lowest level at which an inconsistent STP
was found, Ib containing the highest level at which a con-
sistent STP was found and y for the current level at which

we need to perform the "chopping". The three values are
updated depending on the outcome of the consistency test.

The actual chopping and the consistency test on the STP
obtained are performed by function CONSISTENCY. It re-

350_

25000

2O0OO

15000

tO_O

50C0

0

' ' ' ' ' ' 'den _o*_'
IH

d_ 4O%

d_60% --e--

2100 300 4OO 50O 60O 700 80O 9OO 1000

Figure 4: Time, in seconds, (y-axis) required by chop-solver
to solve, varying the number of variables (x-axis) and the

density, with r=100000 max=50000, pa=5, pb=5 e pc=5.
Mean on 10 examples.

ceives, as input, the level at which the chop must be per-
formed and the STPP. For each constraint of P it looks at

what type is the preference function, a constant, a line or a
semi-convex parabola. It then finds the intersection of the
function with the constant function at the chopping level.
As it finds the intersection for each constraint it fills in the
distance matrix F. This matrix is N x N, where N is the
number of variables of the problem. It represents the dis-

tance graph of the STP (?). This means that if the constraint
between variable i and variable j is the interval [a, b], then

F[i][j] = b and F[j][i] = -a. At this point we apply the
theorem that states that an STP is consistent if and only if its

distance graph has no negative cycles, see (?) (?) (?). In or-
der to accomplish this we run Floyd-Warshall's all-shortest-
paths algorithm on F and then check the diagonal elements.
If no diagonal elements are negative, we can conclude that
STP u is consistent. If we have already reached the num-
ber of decimal digits the user wanted, then we return either
the earliest or the latest solution, respectively correspond-

ing to the assignments :ri = -F[i][0] and :ri = F[0][i].
If instead one or more diagonal elements are negative, we

can conclude that the STPy is inconsistent and either return
the solution of the last consistent STP or keep searching at

lower levels of preference. The solution we return is always
made of integers, that is, in the case of the earliest solution,
the real numbers found intersecting the preference functions

with the chopping level are approximated to the first larger
integer while for the latest the approximation is to the largest
smaller integer.

Figure ?? shows some experimental results for chop-
solver. We have used basically the same random generator
used to test the solver described in Section 3, although it has

been slightly modified since the two solvers use two differ-
ent representation of a constraint.

We have tested chop-solver by varying the number of vari-
ables, from a minimum of 25 up to a maximum of 1000, and

thedensityfrom20%to80%.
/,From Figure ?? we can conclude that chop-solver is only

slightly sensitive to variations in the density and, in this
sense, it finds more constrained problems a little more diffi-
cult. This fact can be partially explained by the way prob-

lems are generated. Having a higher density means having
more constraints with non trivial parabolas, i.e. a _ 0. The

intersection procedure in this case is a little more compli-
cated than in the case of constant or lines.

Chop-solver is indeed sensitive to the number of variables
since it yields an increase of the number of constraints on
which the intersection procedure must be performed.

The choice of mantaining a fixed maximum enlargement
of the intervals, that can be interpreted as a fixed tightness,

is justified by the continuos representation of the constraint
this solver uses. In fact, each constraint is represented by

only two integers for the left and right ends of the interval
and 3 doubles as parameters of the function. Increasing max
affects this kind of representation of a constraint only mak-

ing these values bigger in modulo. This change however
does not affect any of the operations performed by chop-
solver.

Path-solver vs. chop-solver

In Table ??, ?? and ?? we can see a comparison between

chop-solver and

path-solver.

D=20 D=40 D=60 D=80

path-solver 515.95 235.57 170.18 113.58
chop-solver 0.01 0.01 0.02 0.02

Table 1: Time in seconds, used by path-solver and chop-

solver to solve problems with n = 30, r = 100, max =
50, pa = 10, pb = 10, and pc = 5 and varying density
D.Results are mean on 3 examples.

D=20 D=40 D=60 D=80

path-solver 1019.44 516.24 356.71 320.28
chop-solver 0.03 0.03 0.03 0.03

Table 2: Time in seconds, used by path-solver and chop-

solver to solve problems with n = 40, r = 100, max =
50, pa = 10, pb = 10, and pc = 5 and varying density
D.Results are mean on 3 examples.

D=20 D=40

path-solver 2077.59 1101.43
0.05 0.05chop-solver

D=60 D=80

720.79 569.47
0.06 0.07

Table 3: Time in seconds, used by path-solver and chop-

solver to solve problems with n = 50, r = 100, max =
50, pa = 10, pb = 10, and pc = 5 and varying density
D.Results are mean on 3 examples.

It appears clear that chop-solver is much faster. It is also
true that, in a sense, it's also more precise since it can find an

optimal solution with a higher precision. It must be kept in
mind, though, that path-solver is more general. In fact, the
point-to-point representation of the constraints, to be blamed
for its poor performance, allows one to use any kind of semi-
convex function, e.g. step functions, that cannot be easily
compactly parametrized. Keep in mind that such a pointwise
representation is required in order to be able to apply path
consistency. It is also true that, in general, time is dealt with
as a discretized quantity, which means that, once the mea-
suring unit that is most significant for the involved events is
fixed, the problem can be automatically cast in the point-to-
point representation. Moreover, even wanting to extend the
types of parametrized functions in the continuos representa-
tion for chop-solver, we must remember that the system de-
riving from intersecting the constant at chopping level and
the function must be solvable in order to find the possible
intersections. However, the continuous representation used

by chop-solver is, undoubtly, more natural because it reflects
the most obvious idea, the idea we all have in mind, of such

constraints, that is an interval plus a function over it. The

improvement in terms of speed are impressive but the loss
in generality is, on the other hand, considerable.

Conclusions and Further work

References

A. Biso, F. Rossi, and A. Sperduti. Experimental Results on

Learning Soft Constraints. Proc. KR 2000, Morgan Kauf-
mann, 2000.

S. Bistarelli, U. Montanari, and E Rossi. Semiring-based
Constraint Solving and Optimization. Journal of the ACM,

44(2):201-236, March 1997.

R. Dechter, I. Meiri, and J. Pearl. Temporal constraint net-
works. Artificial intelligence, "vbl. 49, 1991, pp. 61-95.

S. Haykin. Neural Networks: a comprehensive Foundation.
IEEE Press, 1994.

L. Khatib, P. Morris, R. Morris, F. Rossi. Temporal Con-
straint Reasoning With Preferences. Proc. IJCA12001.

L. Khatib, P. Morris, R. Morris, F. Rossi, A. Sperduti.
Learning Preferences on Temporal Constraints: A Prelim-
inary Report. Proc. TIME 2001, IEEE Computer Society
Press, 200 I.

A.K. Mackworth. Constraint satisfaction. In Stuart C.

Shapiro, editor, Encyclopedia of Al (second edition), vol-
ume 1, pages 285-293. John Wiley & Sons, 1992.

R. Shostak. Deciding linear inequalities by computing loop
residues. J. ACM 28 (4) (1981) 769-779.

C.E. Leiserson and J.B. Saxe. A mixed-integer linear pro-

gramming problem which is efficiently solvable, proceed-
ings 21st Annual Allerton Conference on Communica-
tions, Control, and Computing (1983) 204-213.

Y.Z. Liao and C.K. Wang. An algorithm to compact a VLSI

compact symbolic layout with mixed constraints. IEEE

Trans.Computer-AidedDesignof integratedCircuitsand
Systems2(2)(1983)62-69.
F.RossiandA.Sperduti.Learningsolutionpreferencesin
constraintproblems.Journal of Experimental and Theoret-
ical Computer Science, 1998. Vol 10.

T. Schiex. Possibilistic constraint satisfaction problems, or
"how to handle soft constraints?". In Proc. 8th Conf. of

Uncertainty in AI, pages 269-275, 1992.

E. Schwalb, R. Dechter. Coping with disjunctions in tem-

poral constraint satisfaction problems. In Proc. AAAI-93,
1993.

S. Russell and P. Norvig. Artificial bltelligence: A Modern

Approach. Prentice Hall, 1995.

